Analysis of Extracted Forearm sEMG Signal Using LDA, QDA, K-NN Classification Algorithms
نویسندگان
چکیده
A surface electromyographic (sEMG) signal includes important information on muscular activity and was recently widely used as an input signal in a myoelectric control system. In this manuscript, eight hand motions were classified using different extracted features from sEMG signals. The results of the experiment show that the combination of sample entropy (SampEnt), root mean square (RMS), myopulse percentage rate (MYOP), and difference absolute standard deviation value (DASDV) achieved the highest classification rate of 98.56% using the linear discriminant analysis (LDA) classifier. Moreover, this study investigated the best value of K that should be used as an input parameter in the K-nearest neighbor (K-NN) algorithm. The result demonstrates that k = 5 is the optimal choice in most cases.
منابع مشابه
Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques
ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...
متن کاملClassification of Indian Stock Market Data Using Machine Learning Algorithms
Classification of Indian stock market data has always been a certain appeal for researchers. In this paper, first time combination of three supervised machine learning algorithms, classification and regression tree (CART) , linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are proposed for classification of Indian stock market data, which gives simple interpretation o...
متن کاملClassification with the pot-pot plot
We propose a procedure for supervised classification that is based on potential functions. The potential of a class is defined as a kernel density estimate multiplied by the class’s prior probability. The method transforms the data to a potential-potential (pot-pot) plot, where each data point is mapped to a vector of potentials. Separation of the classes, as well as classification of new data ...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملClassification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis
2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014